Reaction Rates, Collision Theory & Equilibrium

Flint, MI water crisis

Reaction Rate Lab Discussion

- Surface Area example: Lycopodium
- Catalyst Example: Elephant Toothpaste
- Graph your data from Part 1
 - If you were not here, get data from someone to graph
- With your group, answer Analysis Questions #2-7 (skip #5)
 - Be prepared to discuss as a class

3 Questions to Consider...

- What has to happen for a reaction to occur?
 - Particles have to collide
- How can you increase the rate of a reaction?
 - Increase concentration... why?
 - Increase temperature.... Why?
 - Increase surface area... why?
- Do all collisions result in a reaction? Why or why not?
 - No!
 - Particles must collide with enough kinetic energy and have to collide enough times to react. This is collision theory.
- Reaction Rate Simulation

On Your Whiteboard....

- Draw 2 separate particle pictures to show the difference in particle interactions when you...
 - Increase the temperature
 - Increase the surface area
 - Increase the concentration
- Is it possible to change your variable in a way that would prevent the reaction from happening? Explain in terms of collisions.

Flint, MI Water Crisis

- What is it?
- What have you heard?
- Why did this crisis happen?

CNN Video: https://youtu.be/nTpsMyNezPQ

The pipes didn't change (they were always made of lead), so why is the lead just now entering the water supply? What changed?

What happened?

- Detroit vs Flint water
 - Flint was switched from the Detroit water to the Flint river while they waited for a new system
 - This is a problem because the Flint river was already highly corrosive while Detroit wasn't
 - Corrosive water will eat away at the pipes

- Not only was the water already corrosive, there was also had a bunch of trihalomethane
- So they added something to kill the nasty microbes... FeCl₃
- Why was adding FeCl₃ a bad idea?
 - It added more chlorine (which is highly corrosive) to the already corrosive water - the chlorine then reacted with the lead (Pb) pipes
- How did this affect the speed of the reaction as it was eating away at the pipes? Why?

Equilibrium

- What is meant by "equilibrium"?
 - Some reactions never go to completion
 - Once some product is formed, reactants begin to reform

Ex:
$$2 \text{ HgO} \rightarrow 2 \text{ Hg} + O_2$$

 $2 \text{ HgO} \leftarrow 2 \text{ Hg} + O_2$ $2 \text{ HgO} \rightleftarrows 2 \text{ Hg} + O_2$

Equilibrium

- Initially, only the forward rxn occurs
- Then, the reverse rxn starts
- As the reverse rxn increases, the forward rxn decreases
- Eventually, forward rate equals reverse rate

2 HgO
$$\rightarrow$$
 2 Hg + O₂
2 HgO \leftarrow 2 Hg + O₂
2 HgO \leftarrow 2 Hg + O₂

Chemical Equilibrium

- The point at which concentrations of reactants and products in a closed system remain constant
- Occurs when opposing reactions proceed at equal rates
- It's really "dynamic equilibrium"
 - reactions (collisions) do not stop even though it appears that way if we keep track of the number of each type of particle (or chemical) present

- Jodine Clock
 - Video #1
 - What did you observe?
 - How does this happen?
 - Does our current model of matter help to explain?
 - Could this relate to equilibrium? If yes, how so?
 - Video #2
- Milk of Magnesia
 - What will happen when we add acid?
 - Is there a chemical reaction happening even after the color changes stop?

Nuts & Bolts Equilibrium Lab

$$\begin{array}{cccc} Bolt + Nut & \rightleftharpoons & Bolt-Nut \\ B + N & \rightleftharpoons & BN \end{array}$$

- What happened to the.....as 10 minutes passed?
 - rate of the forward reaction
 - rate of reverse reaction
- How did the two rates compare at the end of 10 minutes?

$$Bolt + Nut \Rightarrow Bolt-Nut$$

- How would you define equilibrium?
 - Dynamic?
 - Stable?
- How does dynamic equilibrium apply to the situation in Flint, MI?

Le Chatelier's Principle

- When stress (or a change) is applied to a system at equilibrium, the system will react to relieve the stress and restore equilibrium.
- Stresses could include:
 - Change in concentration (# of particles)
 - Change in temperature
 - Change in surface area
 - Change in pressure and/or volume

What happens AFTER Equilibrium?

- What happened to the reaction rates when you added more BN to the bin at the start?
 - You added more product (BN) so the equilibrium shifts to the left, creating more of the reactants.
 - "If a reaction is at equilibrium, a shift <u>away</u> from the <u>added</u> chemical occurs."

What happens AFTER Equilibrium?

- What do you think would happen to the reaction rates if you took out some of the already formed BN at the start?
 - You are removing a product, so it would shift the reaction to make more (replace the missing) product.
 - "When a chemical is <u>removed</u> a shift occurs <u>toward</u> the removed chemical."

Changing Temperature & Equilibrium

- Depends on if the rxn is exo or endothermic.
- ▶ Endo: A + B + "heat" <-> C + D
 - "heat" acts like a reactant chemical. Then the same rules follow for added or removing a chemical
- Exo: A + B <-> C + D + "heat"
 - "heat" acts like a product chemical.
- If temperature increases, shift <u>away</u> from the side w/ "heat"
- If temp decreases, shift toward the side with "heat."

Cobalt Chloride (CoCl₂) Equilibrium

$$[CoCl4]^{-2} + H2O \Rightarrow [Co(H2O)6]^{+2} + Cl-$$

$$Ag+ + Cl- \Rightarrow AgCl(s)$$

$$HCl \Rightarrow H+ + Cl-$$

Your task is to figure out how to successfully shift the equilibrium such that the solution turns blue and then shift it back to pink.

Cobalt Chloride (CoCl₂) Equilibrium

$$[CoCl4]-2 + H2O \Rightarrow [Co(H2O)6]+2 + Cl-$$

$$Ag+ + Cl- \Rightarrow AgCl(s)$$

$$HCl \Rightarrow H+ + Cl-$$

- What was your procedure? How did you decide to follow that plan?
- What observations did you make when you tested your procedure?

Connection to Flint Water Crisis

- The water treatment used after they realized the corrosive water was eating away at the pipes, shifted the solubility of the pipe "crust"
 - Solubility = how well it dissolves (in water)
- The crust (protective phosphate layer) can now dissolve into the water, when before it couldn't.
- This exposed the pipes, thus leaching much more lead into the water.

Video #1

Video #2

