	Symbol	Mass	Charge	Location
Electron	\mathbf{e}^{-}	0 amu (1/1822)	-1	around the nucleus
Proton	\mathbf{p}^{+}	1 amu	+1	In the nucleus
Neutron	n°	1 amu	0	In the nucleus
$\begin{aligned} & \mathrm{amu}=\text { atomic mass unit } \\ & 1 \mathrm{amu}=1.66 \times 10^{-24} \mathrm{~g} \end{aligned}$				Nucleus: has all mass very little volume 00,000 total diameter)

- Mass Number, A

- mass of all protons + mass of all neutrons
- Isotopes
atoms with the same \# protons (same element) but different \# neutrons (different mass \#)

$$
\begin{array}{llll}
\text { Ex: } & \mathrm{C}-12 & 6 \mathrm{p}+ & 6 \mathrm{n}^{\circ} \\
\mathrm{C}-14 & 6 \mathrm{p}+ & 8 \mathrm{n}^{\circ}
\end{array}
$$

- lons

atoms with unequal \# of protons and electrons
negative - anions, more electrons than protons
positive- cations, fewer electrons than protons
Ex: $\mathrm{Mg} \quad \# \mathrm{p}^{+}=12 \quad \# \mathrm{e}^{-}=12$
$\mathrm{Mg}^{+2} \quad \# \mathrm{p}^{+}=12 \quad \# \mathrm{e}^{-}=10$
$\mathrm{N}^{-3} \quad \# \mathrm{p}^{+}=7 \quad \# \mathrm{e}^{-}=10$

Atomic Mass (atomic weight)

- Not the same as atomic number
- Not the same as mass number
-Found on the periodic table
- Weighted average of all the isotope masses of an element
-These are relative masses
- Based on 1 amu being 1/12 the mass of a C-12 nuclide

Ex: An atom has 15 protons and 16 neutrons.

1. What element is it? phosphorus
2. Atomic number? 15
3. Mass number? 31
4. Number of electrons? 15

Example:

An element has 2 isotopes, $\mathrm{X}-10$ and $\mathrm{X}-11$.
The abundance of $\mathrm{X}-10$ is 20.2%.
What is the atomic mass of this element?
abund. of X-11: $100-20.2=79.8 \%$

$$
(10)(0.202)+(11)(0.798)=10.8
$$

What do you think this element might be?

Boron

