

Procedure: 1. Tie a piece of string into a loop that fits on a piece of cardboard when it is laid	Eccer	ntricity	Mini 🛛	Lab Qı	uestions	
out in a circle.	Distance foci	Length of major axis	Equation /	Eccentricity Value	Describe/Draw	
2. Place a sheet of paper on the cardboard.	are apart	in cm –Longest length	Calculation (Show your work)	(Calculation answer)	Relative Shape of Drawing	
3. Stick 2 pins through the paper close to the center but separated from each		(use 1 decimal)		,	Ĵ	
other by 2cm. (The yellow pin represents the Sun)	2cm					
4. Loop the string over the pins and use a pencil to trace around them. Keep the	0cm					
string taut.	(Just use 1					
5. Record the following in the data table below:	pin)					
A. Measure the major axis and the distance between the pins.	Analyze an	d Conclude:				
B. Calculate the eccentricity. (See the example calculation above.)	1. What do	o the 2 pins repre	sent?			
6. Repeat steps 3-5 with foci 9 cm and 0 cm apart.	2. For plan	nets orbiting in ou	ur solar system,	what is always	s one of the foci?	
Example: Eccentricity = Distance between the foci	3. How do	es the eccentricit	y number AND	the shape char	ige as:	
2.2cm Distance of major axis	A. The distance between the foci (pins) gets larger?					
between So.	B. The distance between the foci (pins) gets smaller?					
Example city = $\frac{2}{4.5} \frac{2}{cm} = \frac{6}{6.48} \frac{48}{cm}$	4. What is the foci	the eccentricity of a circle?	value of a perfec	ct circle? ?Ho	ow far apart are	
Defense a b Majir anis U.S.cm. Ch. 29 & 30 Salar System & Sam U.S.cm. Seemi-major new	4/19/2016		Ch 29 & 30 Solar System &	Stars	20	

-			
Tim	1e fe 1.	Out of all the objects you selected, what will fall to the ground most quickly?	
	2.	Out of all the objects you selected, what will fall to the ground most slowly?	
Pro	ced	lure:	
1.	Ti	me to test your predictions.	
2.	Go	o into the hallway and mark a height on the wall using masking tape. This is your start om which each object will be dropped.	positic
3.	Pi	ck the first 2 objects in your data table and hold them up to the start line.	
4.	Co	ount to 3 to give the timer time to get the stop watch ready.	
5.	D	rop the objects.	
6.	Re	epeat the above steps so both pairs of objects has a total of 3 trials.	
7.	Gı	rab the next pair of objects, switch jobs, and repeat steps 3-6.	
GR/	AVI	TY: Post Lab Questions:	
	1.	Were your predictions accurate? Why or why not?	
	2.	What relationship did you observe between the speed an object falls towards the Ea the amount it weighs?	rth and
		Did any object defy this relationship? If so, why do you think this happened?	
	(19/20	16 Ch 29 & 30 Solar System & Stars	23

Chapter 29 Solar Sys

