Name							_	
Date	Period	1	2	3	4	5	6	7

Fig 1: Global Lithospheric Plates' Relative Motion and Speed

Data Analysis

- Look at Fig 1: Global Lithospheric Plates' Relative Motion.
- 2. Determine what type of plate boundary exists between each of the two plates in Table 1.
- 3. Describe features that may be found at each of the plate boundaries.

	Features
	

Questions

- 1. Where does the overwhelming amount of seismic activity occur on the Earth's surface?
- 2. Explain why the term recycling is an excellent description of plate tectonics.
- 3. Explain how tectonic plate movement could create another supercontinent like Pangaea.
- 4. If the Earth's core provides the heat that drives plate tectonics, then what will eventually happen as the Earth's core cools down over billions of years?
- 5. What are the various ways in which lithospheric plates interact with each other as they move around on a dynamic Earth?

 Solid Crust & upper maintle