Unit 2
Physical Properties of Matter
Physical Science Fall 2016

Kinetic Molecular Theory

Matter

- Any substance that has mass and occupies space.
- 3 States... or phases

Kinetic Molecular Theory

- Kinetic $=$ Movement (Energy)
- Molecule = Particles
- ALL particles in a substance are constantly in motion.

Kinetic Behavior

- Particles are always moving, but not always at the same speed
- $\underline{\text { FAST movement }}=$ higher temperature $=$ gases
- SLOW movement $=$ lower temperature $=$ solids

Phases of Matter

- Solids
- The particles are packed tightly together and stay in one position.
- The particles vibrate slightly between each other.. so they're not completely motionless.

Phases of Matter (cont.)

- Solids
- Solids are the least energetic phase of matter
- Solids have a definite volume and a definite shape.

Phases of Matter

- Liquids
- Liquids have a medium amount of energy (more than solids, less than gases)
- Liquids have a definite volume but not a definite shape.
- They take on the shape of the container

Phases of matter

- Gases
- Gases are the most energetic phase of matter
- Gases have no definite volume and no definite shape.

Phases of Matter

- Liquids
- The particles are somewhat packed together and move freely around one another.

Phases of Matter

- Gases
- Gas particles spread apart, filling all the space available.

Solid

Holds Shape

Fixed Volume

Liquid
Shape of Container Free Surface Fixed Volume

Gas
Shape of Container
Volume of Container

- All types of matter will have certain characteristics that never change.
- Some examples are: density, boiling point, freezing point, etc.
- We call these Physical Properties.

Types of Physical Properties

- Intensive
- Do not depend on the size or shape of the sample
- Examples?
- Color, hardness, BP, etc.
- Extensive
- Depend on the sizes of the sample
- Examples
- Length, mass, volume, etc.
- Density is a comparison of how much matter there is in a certain amount of space.
- Or how heavy something is for its size
- Thing of a rock vs. a cotton ball the same size.

vs.

Density

- Why things float while other things sink

What is Density

- Density is Mass divided by Volume
$\mathrm{D}=\mathrm{m} / \mathrm{v}$
- $\mathrm{D}=$ Density
- m=mass(g)
- $\mathrm{v}=$ volume (mL)
- So the unit for Density is:

| mass (g) |
| :--- | :--- |
| volume (mL) |

Which one is more dense?

- Demonstration: People in a square

How to Calculate Density

- Density $=\underline{\text { volume }(\mathrm{mL})}$

- Use triangle to figure out which equation to use
- If you are given mass and density, you can figure out the volume by covering up the volume triangle

Which one is more dense?

- Now which one is more dense?

Density

Measuring Density for square objects

- Find the mass using a balance
- Length x width x height
- But what if it's weird looking?

Density of odd-shaped Objects

- Find the mass using a balance
- Use Graduated cylinder, beaker to find volume.

- A brick with a mass of 14 g measures 12 cm $x 4 \mathrm{~cm} \times 3 \mathrm{~cm}$. Calculate the density of the object.

Liquid Layers

- If you pour together liquids that don't mix and have different densities, they will form liquid layers.
- The liquid with the highest density will be on the bottom.
- The liquid with the lowest density will be on the top.

Lets try some problems

An irregular object with a mass of 18 kg displaces 2.5 L of water when placed in a large overflow container. Calculate the density of the object.

Liquid Layers

- Which layer has the highest density?
- Which layer has the lowest density?
- Imagine that the liquids have the following densities:
- * $10 \mathrm{~g} / \mathrm{mL} . \quad{ }^{*} 3 \mathrm{~g} / \mathrm{mL}$.
- * $6 \mathrm{~g} / \mathrm{mL} . \quad{ }^{*} 5 \mathrm{~g} / \mathrm{mL}$.
- Which number would go with which layer?

Gas Laws - Boyle's Law

Robert Boyle was British
Royalty that lived in the $17^{\text {th }}$ century.
He studied all aspects of science, including alchemy.
Do you know what alchemy is?

Gas Laws - Boyle's Law

- When matter turns into a gas, it behaves differently than other matter.
- Boyle's Law is used when the pressure of a gas changes.
- The volume of a fixed amount of gas varies inversely with the pressure of the gas.

Boyle's Law in motion

Pressure

- What is Pressure?
- Gas particles push against the sides of what ever container they are in.
- Pressure is what keeps balloons inflated.

Gas Laws - Pressure

- What is Pressure?

Factors Affecting Gas Pressure

- Amount of gas
- Volume
- Temperature

- As volume decreases, - Pressure increases
- As volume increases,
- Pressure decreases.
- The equation for Boyle's Law is: $-\underline{V}_{1} \times P_{1}=\underline{V}_{2} \times P_{2}$

The Kelvin Scale

- As T increases, so does kinetic energy
- Theoretically, kinetic energy can be zero, but it hasn't been achieved and probably won't ever be achieved
- Absolute zero- The temperature at which a substance would have zero kinetic energy
- The Kelvin Scale- a temperature scale directly related to kinetic energy
- Zero on the Kelvin scale corresponds to zero kinetic energy

Gas Laws - Units

- Pressure can be measured in:
- Atmospheres (atm)
- Kilopascals (kPa)
- Temperature is measured in:
- Kelvin (K)
- $K=$ Celsius +273
- We'll come back to this

Gas Laws - Boyle's Law

A sample of hydrogen gas has a volume of 75.0 mL at a pressure of 0.87 atm . What will the volume of the gas be at a pressure of 1.00 atm if the temperature remains the same?

The Kelvin Scale

- Units are Kelvins (K), with no degree $\left(^{\circ}\right)$ sign

Temperature Conversions

- Easy to convert between Celsius and Kelvin
- How do you think?
- ${ }^{\circ} \mathrm{C} \rightarrow$ K? Add 273
- $\mathrm{K} \rightarrow{ }^{\circ} \mathrm{C}$? Substract 273
- $25^{\circ} \mathrm{C} \rightarrow \mathrm{K}$?
- $(25+273)=298 \mathrm{~K}$
- $310 \mathrm{~K} \rightarrow{ }^{\circ} \mathrm{C}$? - $(310-273)=37^{\circ} \mathrm{C}$
- Fahrenheit \leftrightarrow Celsius?
- $\left({ }^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right) \times 5 / 9={ }^{\circ} \mathrm{C}$
- $\left({ }^{\circ} \mathrm{C} \times 9 / 5\right)+32^{\circ} \mathrm{F}={ }^{\circ} \mathrm{F}$

Gas Laws - Charles’ Law

- Charles' Law is used when the volume of a fixed amount of gas changes with temperature.
- Remember the temp must be in Kelvin!

Gas Laws - Charles’'Law

- As temperature increases, - volume increases.
- As temperature decrease, - volume decreases.
- The equation for Charles' Law is: $-\underline{I}_{2} \times V_{1}=V_{2} \times T_{1}$

Charles’ Law in Motion

Gas Laws - Charles Law

Nitrogen gas in a balloon takes up a space of 1.5 L at 300 K . The balloon is dipped into liquid nitrogen that is at a temperature of 75 K . What will be the volume of the helium in the balloon at the lower temperature?

Gas Laws - The Rea World

