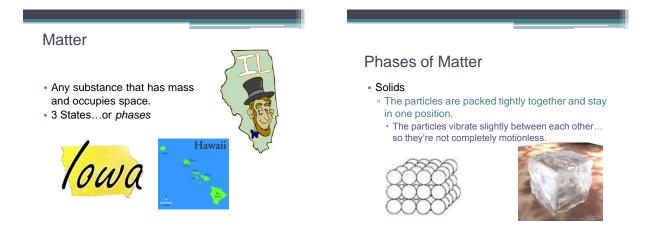


Physical Science Fall 2016

Kinetic Molecular Theory


- Kinetic = Movement (Energy)
- Molecule = Particles
- ALL particles in a substance are constantly in motion.

Kinetic Molecular Theory

Kinetic Behavior

- Particles are always moving, but not always at the same speed
 - <u>FAST movement = higher temperature = gases</u>
 - <u>SLOW movement = lower temperature = solids</u>

Phases of Matter (cont.)

- Solids
 - Solids are the least energetic phase of matter
 Solids have a *definite* volume and a *definite* shape.
 - and heading benefits

Phases of Matter

- Liquids
 - The particles are somewhat packed together and move freely around one another.

Phases of Matter

Liquids

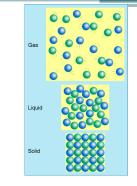
- Liquids have a medium amount of energy (more than solids, less than gases)
- Liquids have a *definite* volume but *not a definite* shape.
 They take on the shape of the container

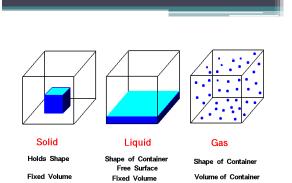
Phases of Matter

Gases

Recap

 Gas particles spread apart, filling all the space available.





Phases of matter

- Gases
 - Gases are the most energetic phase of matter
 - Gases have no definite volume and no definite shape.

Physical Properties

- All types of matter will have certain characteristics that never change.
- Some examples are: density, boiling point, freezing point, etc.
- We call these <u>Physical Properties</u>.

Types of Physical Properties

- Intensive
 - <u>Do not depend on the size or shape of the</u> <u>sample</u>
 - Examples?
 - Color, hardness, BP, etc.
- Extensive
 - o Depend on the sizes of the sample
 - Examples
 - Length, mass, volume, etc.

Density

· Why things float while other things sink

What is Density?

- <u>Density is a comparison of how much matter</u> there is in a certain amount of space.
- <u>Or how heavy something is for its size</u> • <u>Thing of a rock vs. a cotton ball the same size.</u>

vs.

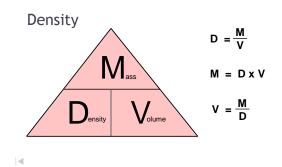
What is Density

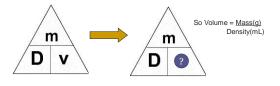
- <u>Density is Mass divided by Volume</u> D=m/v
- <u>D=Density</u>
- <u>m=mass(g)</u>
- v=volume(mL)
- So the unit for Density is: <u>mass (g)</u> volume (mL)

Which one is more dense?

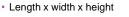
• Demonstration: People in a square

Which one is more dense?


· Now which one is more dense?


How to Calculate Density

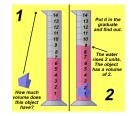
• Density = <u>mass(g)</u> volume(mL)



- Use triangle to figure out which equation to use
- If you are given mass and density, you can figure out the volume by covering up the volume triangle

Measuring Density for square objects

- Find the mass using a
- balance


• But what if it's weird looking?

Density of odd-shaped Objects

- · Find the mass using a balance
- Use Graduated cylinder, beaker to find volume.

Lets try some problems

An irregular object with a mass of 18 kg displaces 2.5 L of water when placed in a large overflow container. Calculate the <u>density</u> of the object.

Givens:	m=18 kg	v=2.5L	D=? k	:g/L
Equation:	D=m/v	Substitution: ? Kg/L = 18 kg	/2.5 L	Answer with unit 7.2 kg/L
				-

DV

• A brick with a mass of 14 g measures 12 cm x 4 cm x 3 cm. Calculate the <u>density</u> of the object.

	Givens:		
	Equation:	Substitution:	Answer with unit
m D v			

A bar of gold with a density of 5 g/ml has a volume of 500 mL. Calculate the mass.

Givens:		
Equation:	Substitution:	Answer with unit

Liquid Layers

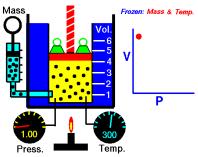
- If you pour together liquids that don't mix and have different densities, they will form liquid layers.
- The liquid with the highest density will be on the bottom.
- The liquid with the lowest density will be on the top.

Liquid Layers

- Which layer has the highest density?
- Which layer has the lowest density?
- Imagine that the liquids have the following densities:
- * 10g/mL. * 3g/mL.
- * 6g/mL. * 5g/mL.
- Which number would go with which layer?

Gas Laws - Boyle's Law

Robert Boyle was British Royalty that lived in the 17th century.


He studied all aspects of science, including *alchemy.*

Do you know what alchemy is?

Gas Laws - Boyle's Law

- When matter turns into a gas, it behaves differently than other matter.
- <u>Boyle's Law</u> is used when the pressure of a gas changes.
- The volume of a fixed amount of gas varies inversely with the pressure of the gas.

Boyle's Law in motion

Gas Laws - Pressure

• What is Pressure?

Gas Laws - Pressure

Pressure

- What is Pressure?
 - Gas particles push against the sides of what ever container they are in.
 - Pressure is what keeps balloons inflated.

Factors Affecting Gas Pressure

- · Amount of gas
- Volume
- Temperature

Gas Laws - Units

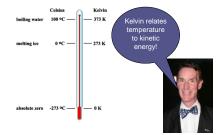
- Pressure can be measured in:
 - o <u>Atmospheres (atm)</u>
 - o Kilopascals (kPa)
- Temperature is measured in:
 - o <u>Kelvin (K)</u>
 - K = Celsius + 273
 - We'll come back to this

Gas Laws - Boyle's Law

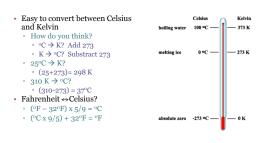
- <u>As volume decreases</u>, <u>o Pressure increases</u>
- As volume increases,
- o <u>Pressure decreases.</u>
- The equation for Boyle's Law is: • V₁ × P₁ = V₂ × P₂

Gas Laws - Boyle's Law

A sample of hydrogen gas has a volume of 75.0 mL at a pressure of 0.87 atm. What will the volume of the gas be at a pressure of 1.00 atm if the temperature remains the same?


Givens:	V ₁ = 75.0 mL	P ₁ = 0.87 atm	P ₂ = 1.00 a	tm
V ₁ *	$P_1 = V_2 * P_2$	75 mL * .87 atm = V Substitution:	₂ * 1.0 atm	65.25 mL = V_2 Answer with Units:

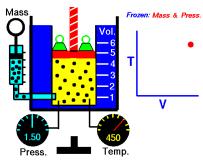
The Kelvin Scale


- · As T increases, so does kinetic energy
- Theoretically, kinetic energy can be zero, but it hasn't been achieved and probably won't ever be achieved
- <u>Absolute zero-</u> The temperature at which a substance would have zero kinetic energy
- The Kelvin Scale- a temperature scale directly related to kinetic energy
 - Zero on the Kelvin scale corresponds to zero kinetic energy

The Kelvin Scale

• Units are Kelvins (K), with no degree (°) sign

Temperature Conversions

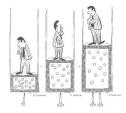

Gas Laws - Charles' Law

Gas Laws - Charles' Law

- <u>Charles' Law is used when the volume of a</u> <u>fixed amount of gas changes with</u> <u>temperature</u>.
- Remember the temp must be in Kelvin!

Charles' Law in Motion

Gas Laws - Charles' Law


- <u>As temperature increases</u>, <u>volume increases</u>.
- <u>As temperature decrease</u>, o volume decreases.

Gas Laws - Charles Law

Nitrogen gas in a balloon takes up a space of 1.5 L at 300 K. The balloon is dipped into liquid nitrogen that is at a temperature of 75 K. What will be the volume of the helium in the balloon at the lower temperature?

$_{Givens:}$ V ₁ = 1.5 L	T ₁ = 300 K T ₂ = 75 K	
$V_1 * T_2 = V_2 * T_1$	1.5 L * 75 K = V ₂ * 300 K	.375 L = V_2
Equation:	Substitution:	Answer with Units:

Gas Laws - Charles' Law

Gas Laws - The Real World

Gas Laws - The Real World

