

- Matter is anything that is made up of atoms.
- Atoms are the smallest particle of an element.
- They are so small that:
- 1 sheet of paper $=10,000$ atoms thick
- 1 drop of water has 2 trillion atoms of oxygen and 4 trillion atoms of hydrogen.

Atoms - Protons

- The first type of particle is called the PROTON.
- Protons are found in the nucleus
- Protons have a positive (+) charge.
- Protons have a mass of 1 a.m.u.
 Starbursts.
- What are some examples of matter?
- The three parts of an atom are:
- Protons
- Neutrons
- Electrons
- Another particle is the NEUTRON.
- Neutrons are also found in the nucleus
- Neutrons have no charge (neutral)
- Neutrons have a mass of 1 a.m.u.
- Neutrons act like the glue that holds the nucleus together.

[Atoms - Electrons

- Electrons are the third type of particle inside of an atom.
- They are very small, and exist outside of the nucleus in the electron cloud
- Electrons have a negative charge (-)
- They have almost no mass

http://www.youtube.com/watch?v=|P57g
EWcisY

- Atoms are made up of three subatomic particles:

	Live where?	Have mass?	What charge?
Protons	In nucleus	1 a.m.u	+
Neutrons	In nucleus	1 a.m.u	none
Electrons	Outside nucleus	Almost no mass	-

- Can find them by looking for the letters that shorten the name of the element
- Most are based on the Latin name
- The symbol is either:

1. One capital letter
-ex: Carbon = C
2. Two letters... $1^{\text {st }}$ capital, $2^{\text {nd }}$ lower case -ex: Krypton = Kr

[MOST IMPORTANT RULE!!

- You CANNOT change the number of protons (atomic number) of an atom
- If you do, you CHANGE ITS IDENTITY!
- All atoms of the same element have the same number of protons!

 \# of Protons + \# of Neutrons
- The Atomic Mass (bottom \#) rounded to the nearest whole number

- If we take the Mass Number and subtract the Atomic Number, we can figure out the number of neutrons.
- Example: Aluminum is element 13 and has a mass of 27 ... how many neutrons?

Atomic Mass

- Bottom Number in the
element's box on the Periodic Table
- It is determined by finding the average mass of that particular element
- These numbers will be decimals - you must include the numbers after the decimal point for atomic mass!
[Determining Composition of Atoms $]$

- Number of protons in an element
- Also, number of electrons when it is neutral (has no charge)
- Number of neutrons = mass number - atomic number
- \# of protons = atomic number
- If neutral atom... \# protons = \# electrons

What is the atomic number? 3

- How many protons? 3
- How many electrons since it is neutral?
- What is the atomic mass? 6.939
- What is the mass number? Rounds to 7

- How many neutrons? 4

- What is the mass number? Rounds to 23
- How many neutrons? ${ }_{12}$
 number? Rounds to 11
- How many neutrons? 6

- Lose electrons and become positive
- Ductile (in wires)
- Malleable (can bend)

- Good conductors of heat and electricity
- MOST are solid at room temperature

- Gain electrons and become negative

- Brittle
- Good insulators
- Found as solid, liquid, or gas at room temp
- All very different!

Dimitry
Mendeleev was a Russian (actually Siberian)
scientist that lived in the late 19 ${ }^{\text {th }}$ Century.

- Found directly on either side of zig-zag line

- Except AI (this is a metal!!!)
- Properties of both metals and nonmetals
- Less conductive than metals, but poorer insulators than nonmetals
- Electrons held more tightly than metals
- Electrons can be freed with heat

- Found in the middle of the table
- Can change their number of valence electrons
- Good conductors
- Examples:
- Gold
- Zinc
- Copper

Bottom Rows are also known as the Rare Earth Metals!!!
 electrons

- VERY reactive!!!!
- Most have a negative charge
- Examples:
- Fluorine
- Chlorine

- To draw the electron clouds:

1. Figure out how many total electrons
2. Fill in the electrons starting with the $1^{\text {st }}$ shell

- Sulfur has:
- 16 electrons

- A smart man named Gilbert Newton Lewis figured out an easier way!
- For Lewis Dot Structures draw only the important electrons...are called the outer, or valence, electrons

- The different layers (shells) of clouds hold different numbers of electrons
- $1^{\text {st }}$ cloud $=\underline{2}$ \qquad
- $2^{\text {nd }}$ cloud $=\underline{8}$ These cloud layers conveniently
- $3^{\text {rd }}$ cloud $=8$
match the rows on the periodic table:
$1^{\text {st }}$ row $=2$ elements
$2^{\text {nd }}$ row $=8$ elements
$3^{\text {rd }}$ row $=8$ elements...
And then it gets complicated

- Practice Problem
- Draw the electron clouds for an Al atom

- Practice Problem \#4
- Draw Lewis Dot Structures for:

- All elements want to be full of electrons:
- So elements gain or lose electrons until they are full
- This gives the atom a charge
- Neaative charge if thav anin oloctrons
- Positivo Charged atoms are called ions: cations if they are positive and anions if they are negative

Atomic Number Continued

- If the element has a positive charge
- Equation:
atomic \# - charge = \# electrons

(Atomic Number) 19
(Charge) 1
$\stackrel{1}{18}$
18 Electrons

- How many valence electrons in Li?

1

- Is it easier to gain or lose to become full?
lose
- How many will it gain or lose?
- What charge will it become?
Cl

- How many valence electrons in O ?
- Is it easier to gain or lose to become full?
- How many will it gain or lose?
- What charge will it become?

Name	Symbol	Atomic \#	Mass \#	Protons	Neutrons	Electrons	Charge
Magnesium- 24 Sulfur-33							+2
Phosphorus- 34							-2

Atomic Tables Continued

- Protons
- Same as Atomic Number
- Neutrons
- Mass Number - Number of Protons
- Electrons
- If No Charge (equal to protons)
- If Has a Positive Charge (protons - charge)
- If Has a Negative Charge (protons + charge)

Atomic Tables

- Rules
- Name \& Symbol
- Look @ Periodic Table
- Atomic Number
- Top Number in Element Box
- Mass Number
- Protons + Neutrons

