




- Atoms never disappear
- Atoms last forever
- How things are bonded may change, but the total number of atoms stays the same

Balance the Following	Reactions:
1. Cu + $Pt(CN)_2 \rightarrow$	Pt + Cu(CN)

Reaction Type:

Reaction Type:

Balance the Following Reactions:

3. Ag + $O_2 \rightarrow Ag_2O$

Balance the Following Reactions:

4. $H_2(CO_3) \rightarrow H_2O + CO_2$

Reaction Type:

Reaction Type:

5 Reaction Types:

- o 1) Single Replacement
- 2) Double Replacement
- 3) Synthesis
- 4) Decomposition
- 5) Combustion

Now let's look at each type individually

Single Replacement

- Definition One metal replaces another
- Generically written as:
 Element + Compound → Compound + Element
- Example #1:
 - \circ Mg + HCl → MgCl₂ + H₂
- Example #2:
 - \circ Cu + Ag(NO₃) \rightarrow Ag + Cu(NO₃)₂

Double Replacement

- <u>Definition Two metals switch partners</u>
- Generically written as:
 - Compound + Compound → Compound + Compound
- Example #1:
 - \circ 2NaCl + BaF₂ → 2NaF + BaCl₂
- Example #2:
 - \circ AgNO₃ + NaCl → AgCl + NaNO₃

<u>Synthesis</u>

- Definition Two chemicals combining to make one product
- Generically written as:

 Element + Element → Compound
 of course, the reaction would need to be balanced
- Example #1:

\circ H₂ + O₂ \rightarrow H₂O

Example #2:
 Mg + O₂ → MgO

Decomposition

- Definition One reactant breaking into two products
- Generically written as:
 - Compound → Element + Element
 - of course, the reaction would need to be balanced
- Example #1:
 - \circ MgCl₂ \rightarrow Mg + Cl₂
- Example #2:
 - $\circ H_2O_2 \rightarrow H_2O + O_2$

Combustion

- <u>Definition Carbon compounds burning</u> with O₂ to make H₂O and CO₂
- <u>Generically written as:</u> • $C_xH_x + O_2 \rightarrow CO_2 + H_2O$
- Example #1: \circ CH₄ + O₂ \rightarrow CO₂ + H₂O
- Example #2: \circ C₂H₆O + O₂ \rightarrow CO₂ + H₂O

Visual Review o	f Types of Reactions
Single Replacement	Image: Computer of the second seco
Decomposition	Synthesis

Watch the movie and then complete the chart. Chemical Reactions

Type of	Definition	★ Equation
Reaction	Two or more elements or	$A + B \rightarrow AB$
Synthesis	compounds combine to make ONE substance	$\bullet + \bullet \rightarrow \bullet \bullet$
Decomposition	Compounds break down into simpler substances	$AB \rightarrow A + B$
	Occurs when one element	$AB + C \rightarrow AC + B$
Single Replacement	replaces another one in a compound	
•	Occurs when different	$AB + CD \rightarrow AC +$
Double Replacement	atoms in two different compounds trade places	
	A = Red B = Blue C = Green I	D = Yellow

activates the reaction

Identifying Chemical Reactions	$\underline{\qquad} Na + Br_2 \rightarrow NaBr \qquad \underline{\qquad} CuCl_2 + H_2S \rightarrow CuS + HCl$
2. Use colored pencils to circle the common atoms or compounds in each equation to help you determine the type of reaction it illustrates. Use the code below to classify each reaction. S = Synthesis D = Decomposition SR = Single Replacement DR = Double Replacement	$\underline{\qquad} HgO + Cl_2 \rightarrow HgCl + O_2 \qquad \underline{\qquad} C + H_2 \rightarrow CH_4$
$\underline{\qquad} P + O_2 \rightarrow P_4 O_{10} \qquad \underline{\qquad} Mg + O_2 \rightarrow MgO$	$\underline{\qquad} KCIO_3 \rightarrow KCI + O_2 \qquad \underline{\qquad} S_8 + F_2 \rightarrow SF_6$
$\underline{\qquad} HgO \rightarrow Hg + O_2 \qquad \underline{\qquad} Al_2O_3 \rightarrow Al + O_2$	$\underline{\qquad} BaCl_2 + Na_2 SO_4 \rightarrow NaCl + BaSO_4$
$\underline{\qquad} Cl_2 + NaBr \rightarrow NaCl + Br_2 \underline{\qquad} H_2 + N_2 \rightarrow NH_3$	
Heats of Reaction	Heats of Reaction (cont.)
 Reactions can either 	Reactions require energy to get started
 Give off heat Feels Hot 	• The energy can be:
• Exothermic	• Heat
The energy level at the end of the reaction is lower than	 Light
the energy level at the beginning of the reaction	 <u>The energy required to get a reaction started is</u>
 Therefore, the change in heat (∆H) is negative Take in heat 	called Activation Energy
 Endothermic The energy level at the end of the reaction is higher 	The Activation Energy

• The energy level at the end of the reaction is higher than the energy level at the beginning of the reaction

• Therefore, the change in heat (ΔH) is positive

Rates of Reaction

- <u>Ways to make reactions happen</u> <u>faster/slower:</u>
 - Increase the concentration
 - o Increase the temperature
 - Make the particles smaller (increase surface area)
 - <u>Add a catalyst</u>
 - <u>Use an inhibitor</u>